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INRTROBUCTION

Boundary layer skin-friction drag on an aircraft accounts for
approximately 40% of the total vehicle drag. Therefore, any substantial
reduction in skin-friction drag would Tead to great saving in fuel. Skin-
friction drag is induced at both Taminar and turbulent conditions. Laminar
flow (low skin-friction) is limited to surfaces near the leading edge,
while turbulent fiow (high skin-friction) is dominant on the rest of the
vehicle., Thus, any effective reduction in skin-friction drag should come
from that part due to turbulent flow, and it has been suggested that this
may be accomplished by use of compliant surfaces.

Skin-friction drag reduction using compliant surface is a unique
concept. Its main advantage is simplicity; no slots, ducts, or internal
equipment of any nature are used. It requires only a surface with certain
characteristics which would interact favorably with the flow. Kramer [1]
is credited with the original idea of drag reduction by using compliant
surfaces, based on his observations of dolphins swimming in water.

Numerous experimental and theoretical studies have been undertaken to
explain the phenomenon of drag reduction by comptiant surfaces. A 1ist of
references and discussion of such results are given by Ash, et al. [2,3,4].
So far, there is no theory which can explain satisfactorily such a pheno-
menon. However, scme mechanisms have been postulated as possible explana-
tions. One postulate states that the motion of the compliant surface
delays the transition from laminar to turbulent boundary layer. Another
assumes that the motion of the compliant surface alters the structure of
the fully turbulent Tlayer. The latter postulate appears to be more likely.

Accordingly, Ash, et al. [3] have proposed two models for the alteration




SUMMARY

Some tentative compliant wall structures designed for possible skin
friction drag reduction are investigated. Among the structural models
considered is a ribbed membrane backed by polyurethane or PVS plastisol.
This model is simplified as a beam placed on a viscoelastic foundation as
well as on a set of evenly spaced supports. The total length of the beam
may be either finite or infinite, and the supports may be either rigid or
elastic. Another structural model considered is a membrane mounted over
a series of pre-tensioned wires, also evenly spaced, and the entire mem-
brane is backed by an air cavity. A1l these structural models belong to the
general class of periodic structures for which a simple mathematical
analysis is possible. The forcing pressure field is idealized as a frozen
random pattern convected downstream at a characteristic velocity. The
results are given in terms of the frequency response functions of the
system, the spectral density of the structural motion, and the spectral
density of the boundary-layer pressure including the effect of structural
motion. These results are used in & parametric study of structural con-
figurations capable of generating favorable wave lengths, wave amplitudes

and wave speeds in the structural motion for potential drag reduction.



of the structure of the boundary layer. In the first model, the change of
boundary-layer structure is attributed to the direct coupling interaction
at the fiuid-wall interface, and in the second model it is assumed that
the surface radiates acoustical disturbances which alter the distribution
of turbulent energy from the large-scale eddies to the smaller ones.

In both models proposed in [3], desirable interacticns of the surface
with a turbulence field can be induced in one of three.possible ways; using
an active wall, a passive resonant wall, or a flow-triggered wall.

The first type is one that is mechanically or electrically driven at
prescribed frequency, amplitude, wave speed and shape. The objective is
to obtain a forced narrow-band surface motion at a predetermined frequency
and amplitude.

The second type, a passive resonant compliant wall, has been the most
commonly-used experimental configuration in the past. In this case, the
compliant wall is excited by the pressure field to establish a resonant
mode. A favorable interaction would occur if this resonant mode would
vibrate in a frequency that falls within the energy-containing spectral
range of the turbulence.

The flow-triggered wall {or in the true sence of the word, an ideal
compliant wall)} is one that responds to all the turbulence "bursts", not
only to a few "bursts" as in the other two types. Although this kind of
a compliant surface may be the most effective in drag reduction, it is
extremely difficult or even impossible to design such an ideal surface.

Several possible structural configurations have been suggested for
passive compliant surfaces: membrane surfaces, rigidly backed slabs,
laminated structures, and periodic structures (structures which are

composed of identical units repeated at equal distances). Of all these



configurations, periodic structures have received the Teast attention.
In this investigation, therefore, the design of periodic structures as
tentative compliant surfaces will be emphasized. In particular, two
models of periodic structures will be investigated: a ribbed membrane
backed by a soft material such as polyurethane or PVS plastisol, and a
membrane backed by an air cavity. In the first model, the structure is
assumed to be resting on a viscoelastic foundation which would approximate
the behavior of polyurethane or PVYS plastisol mentioned above. Also, in
this analysis, the ribbed two-dimensional membrane is replaced by a one-
dimensiconal periodic beam on equi-spaced supports. The supports, which
are simplified versions of ribs, provide rotational and transversal
elastic restraints to the beam.

In the second model, a number of circular solid wires are attached
{glued) to a two-dimensional membrane. In the anaiysis, the wires are
treated as pre-tensioned strings.

In either model the structure can be of finite or infinite length.
For the first model, both cases will be considered while only an
infinitely long structure will be considered for the second one.

In order to achieve drag reduction, the proposed design should
possess certain dynamic characteristics which will interact favorably
with the flow. In other words, the motion of the compliant surface when
excited by a turbulence field should have the wave shape, propagation
speed, wave length, and amplitude which would make such interaction
possible. 1In the absence of a theory which can predict such characteris-
tics, wind tunnel measurements have been the only available source of
information. Historically, experimental investigations have been carried

out at low subsonic speeds. This is probably because of the fact that it
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is easier to control the experiment at such speeds. Accordingly, Ash,

et al. [3,4] have done some experimental investigations at a speed range

of 50-150 ft/sec to verify some of the preyious experiments on one hand,
and to try to establish a compliant drag reduction theory on the other hand.
Based on their wind tunnel measurements, they have suggested that the

desired motion of a possibly-successful compliant surface should have

‘the following characteristics. (Private communication from R. L. Ash)

(1) the maximum amplitude of the vibration should be (1-3) x 10'3

inches

(2) the resonant frequency should not exceed 1500 Hz

(3) the wave length of the surface motion should not exceed
.1 inches.

In this analysis, the above characteristics will act as criteria
for the design of a tentative compliant surface. However, one should
keep in mind that the actual goal of compliant drag reduction is to
reduce drag not only at such low speeds, but most importantly at high
subsonic and supersonic speeds which represent a range within which
most vehicles fly.

The response of finite beams to a convected pressure field has
been analyzed in the past by calculating the principle modes of the
system, and by studying the forced motion in each significant mode [5-8].
Alternatively, transfer matrix techniques have been developed by Lin, et
al. [9-12] to calculate the response directly without determination of
normal modes. In the case of periodic structures, accurate computation
of normal modes is extremely difficult. Mead and associates [13-17]
have used another approach, namely the wave propagation approach which

is originally due to Brillouin [18]. This approach works well and with



great simplicity for periodic stfﬁétuféshgf ihfin%fe leﬁgth. It can also
be applied to finite periodic structures but the procedure becomes more
involved.

In this investigation, the wave propagation approach-also will be
used to obtain a closed-form solution for-:-the structural response.
However, the analysis differs from that of Mead in two respects: first,:
it takes into consideration the effect of the foundation (or the air gap)
on the structural response, and secondly:it incorporates the effect of the
jnteraction between the fluid and the motion of the structure. Finally,
the result of a parametric study aiming at an optimal desidn which has

the desired surface motion will be presented.



I. THE EXCITING PRESSURE FIELD

The structure is assumed to be excited by a turbulent pressure field
stemming from a fully turbulent boundary layer, The pressure field is
random in nature and can be described only by statistical quantities.

From the standpoint of the structural response, the simplest mathematical
model for such a field is one that is statistically homogeneous in space
and convected in a given direction as a frozen pattern. The frozen pattern
assumption is known as Taylor's hypothesis. Since experimental measurements
of the cross-correlation or cross-spectrum of a boundary layer turbulence
generally show some degree of decay in addition to convection, Lin and
Maekawa [19] recently have proposed a superposition scheme where a decaying
turbulence can be constructed from infinitely many frozen-pattern components.
Although the new model might represent a real turbulence more accurately,
Taylor's hypothesis will be used in this investigation for computational
savings.

Therefore, the turbulent pressure field wiil be treated as a random
function of x - Uct and y where Uc is the convection speed, t is time,
and the flow is assumed to be convected in the positive x-direction.

Under this assumption, the pressure over a panel of width b can be

expressed as a Fourier-Stieljes integral

wm

P(x - U_t,y) = J ellot - k) gery 1 (1.1)
vhere
w = frequency in radians per second
k = wave number, {k = ﬁii .

c

It can be shown that since P is statistically homogeneous
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E{dF(k],y]) dF*(kz,yz)} = Sp(k],n) S(k] - k2) dk1dk2

where 1 = Y| = ¥p» E{*} represents the ensemble average, an asterisk
denotes the complex conjugate and Eﬁ(k,n) is the wave-number cross-spectrum
referred to a coordinate frame moving with velocity Uc. To simplify further

our analysis, we assume that §b can be expressed in a separable form as

-S-p(k]’n) = -S-p(k'l) g(n)

where g(n) is the cross-correlation of turbulence in the y-direction. In
some cases the functional form of g can be determined analytically. For
instance, in the case of homogeneous and isotropic turbulence, g{n) is
given by Lin [20]
2 n2 an 1 an an an
9(n) =k |7 KT+ -7 |30 - T KT
. 2 % .

where L is the scale of turbulence, a = [1 + {Lk;}°] , and K (+) is the
Bessel function of the second kind (Although the above expression for g{n)
js derived for the cross-spectrum of turbulence velocity, it is reasonable
to use the same form for the pressure using a different vajue for L}.

However, based on experimental data for homogeneous boundary layer turbulence,

Mastrello [21] expresses g{n) as
g(n) = e~ Inl/8 (1.2)

where B is a characteristic length proportional to the boundary layer
thickens §. In what follows we will use Mastrello's expression, Eq. (1.2).

Expanding Eq. (1.2) in & Fourier series,



(>~

g(n) = 7 e‘im‘rn/b f (].3)

_=——C n

The Fourier coefficients fn's are computed from

b .
£ =1 [ e inl/B ginmy/b 4o

n 2b
-b
b
= %1 J e VB cos (%g-n) dn
0
(1/8)
=& 0 - @ 6 (1.4)

(1/p)% + (1?2

Now, the separability assumption of §b is equivalent to replacing
Eq. {1.1) by

O

P(x - U t.y) = E(y) J el (ot = kx) e iyy (1.5)

with

E{G{y;) &*{y,)} = g(n)
If G{y) is also expressed as a Fourier series

6ly) = 5 f emw/b (1.6)

=0 n

then by use of the orthogonality of Fourier coefficients we can show that

N2
1£1° = f,



In the case of a one-dimensional structure, the variation of a
pressure field in the y-direction becomes immaterial. Therefore, the

pressure P may be expressed as

=]

P(x - U.t) = J o Hot-kx) e (1.7}

-0

It can be seen from Eq, (1.5) or Eq. (1.7) that if a linear analysis
is valid, the solution to the present random vibration problem can be
constructed from the solution of a fundamental problem where the
excitation is

1(wt-kx), for the gne-dimensional case,

1{wt-kx) oInmy/b

(a} a unit plane wave, e
(b} a y-direction modulated unit plane wave, e
for the two-dimensional case.
It seems proper to call such a fundamental solution a frequency response
function.

In the following sections, we will be mostly concerned with obtaining
the frequency response functions for different structural configurations
corresponding to a unit excitation of the type either (a) or {b) mentioned
above. In each case, the frequency response function can then be used to
compute the spectral density of the structural response, The spectral
analysis of the radiated pressure induced by the structural motion also

will be presented.

10



II. AN INFINITE BEAM RESTING ON A VISCOELASTIC FOUNDATION

The configuration of such a beam is shown in Fig. -1 (a and b).
Fig. 1-a represents the case when the supports are considered to be
infinitely rigid in the transverse direction, while Fig. 1-b represents
the case when these supports are transversely elastic. As can be seen
from Fig. 1, the structure is composed of an infinite humber of bays,
each of length 2. Also, it is to be noted that the representation of the
viscoelastic foundation as shown in Fig. 1 is just one of several possible
representations [27-30]. The inclusion of the spring k] is to accommodate
some viscoelastic materials which deform instantaneously under Toading.
The values of the spring constants k], k2 and the damping coefficient n,
depend on the specific chosen material.

The equation of motion of such a beam at any location not immediately

over a support is given by

(2.1)

where
P = the turbulence pressure field neglecting the effect of the beam
" motion

P1 = additional pressure generated by the beam motion

F = foundation reaction

W = transverse displacement of the beam
m, = mass of the beam per unit length

D = flexural rigidity of the béam.

Since we are interested, at this stage, in obtaining the frequency response

i(wt-kx)

function only, a unit excitation e will be used instead of the

11
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Fig. 1-a  Infinite Periodic Beam on a Viscoelastic Foundation (Transversely Rigid Supports)

1
Z

Fig. 1-b  Infinite Periodic Beam on a Viscoelastic Foundation (Transversely Elastic Supports)
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random pressure P. Also, if the periodic beam considered is actually a
strip of periodically supported plate, the more appropriate value for D
to be used in the computations would be the bending rigidity df the plate.
By the same token, my and F would be mass and force per unit area,
respectively.

The reaction of the foundatjon, F, is obtained as follows:
From Fig. 2, one finds that

W= W] + W

2
where
N] = relative displacement of point a w.r.t. point b
Hz = relative displacement of point b w.r.t. point ¢
(which is the absolute value of the displacement of point b)
F = kW (2.2)
F = kW, + 1 W, (2.3)

To obtain an expression relating the reaction F and the total deflection W,

differentiate both sides of Eq. (2.2)
W, (2.4)

multiply Eq. (2.2) by k2’ Eq. (2.4) by n,s Eq. (2.3) by k] and add,

(k] + k‘z)F +n, F k]kz(wl + w2) + k] n, (ﬁ] + 1;:2)

or (k] + kZ)F tn, F

Eq. (2.5) can be written in a more suitable form (for future discussions
concerning the effect of the spring kz) by dividing both sides_by kz

k] n

k n, - .
1 Ve_ oy \J




a
k], w]
b
n
v é k2, wz
A I

Fig. 2 Viscoelastic Foundation

14



Combining Eqs. (2.1) and (2.6), one obtains

k] «
H+—-—nvN

A0 “° * : ™k
2

y &M i W o+ k
, 3t 34 b

» }(P+ P]I (2.7)
z=0

.\
i

1
tax )+ k2 3t

For an infinitely long periodic beah, the wave propagation approach
due to Brillouin and Mead can be prlied'most conveniently.” Rewriting the

exciting unit plane wave in the form,

eilut - kx) _ i(wt - ug-x/2) (2.8)

where Bg = k& is seen to be the phase difference of the exciting wave at

two points separated by a distance £ along the beam. However, the structural

- response is not restricted to this phase: difference although it must be

spatially periodic with period 2.. This ﬁeriodicity tondftion is satisfied

by expressing the structural response as follows:

8

W(x,t) = A ol lwt - uy x/2) (2.9)

[N e B

with ¥, = Mg + 2nw. This series must be made to satisfy the B.C.'s at the
supports. Also, it is to be observed that corresponding to different LI
different wave components travel along the beam at difference speeds;

namely

_ Wl _ wl
Co =%, " g+ 2m (2.10)

Each wave component can travel in either the positive or negative direction

depending on the sign of - For small values of ]unl, the absolute value

15



of Cn can be very large. The physical implication is that a subsonically
convected excitation can generate supersonic waves in the structure. On
the other hand, subsonic waves also can be generated by supersonically
convected excitations since cn become smaller for large values of n.
Another interesting relationship involves the wave lengths of the
response components. ‘If the usual definition of wave -length is modified
so_ that a negative-going wave has a negative wave length, then the wave

length, An’ is related to Cn by

An/ Cn = constant

Thus, slower traveling waves have shorter wave lengths.

Now, to solve Eq. (2.7) for the displacement W, the reactive pressure
'P] has to be expressed in terms of W. The pressure P] which is induced by
the structural motion on the upper side of the beam is governed by the

convected wave equation
(——B+V—32P=a2vzp (2.11)
ot X 1 1 *

the flow velocity

£
g
1]
=
m
<
1

a = the speed of sound

<l
fl

Laplace operator
This induced pressure is subjected to the boundary condition

aP

2
) ? .
Pt Vo) W= - = (2.12)

2=0

and the radiation condition that it propagates in the domain z < 0.
The solution to Eq. (2.11), taking into account the above conditions, is

given by Morse and Ingard [22]:
16-



. ‘ 2
T jwp,a; (C. - V) ,
Pl =1 i W (2.13)
]z=0 n=-= ¢ \/(C - V)2 - a2 "
n n 1
where oy = fluid density surrounding the beam (air)
'Cn = the propagation speed of the nth wave component of the response
"n = nth component of the displacement

=A el (wt - u, x/2)

Somg general comments about the expression for P, as given inlEq. (2.13)
are in order:
(i) When Cn = V, the contribution of such wave component to P] is zero.
ii en - = a,, + o (shock wave effect
(ii) WHh lCn v| 1 P] (shock ffect)
(iii) The nth component of P, will give a damping effect whenever
1
[cn -vi > ay. This would occur:
(a) If w is very high which makes C_ very large (especially
n
when Cn is negative)
(b) When V > a, and C_ is negative (or C_ is positive but
1 n n
ICn - V| is still greater than a;)
(iv) The nth component of P, will act as an added mass if the quantity
1
under the square root sign in Eq. (2.13) is negative; i.e.,
'cn"Vl <a-|
(v) When V < 2, and w is small (Cn giéﬁ%), the nth component of P,

will be approximately proportional to V2.

Determination of the Coefficients Ap's::

Substituting Eq. (2.9) into Eq. (2.7), one obtains
4
pZqrc u=P+p| (2.14)
X
z=0

17



k
where 2 1 . .

-w” my (1 + k—z' + 'lqmv/kz) + k.l + 1uuk-|1'1vlk2 A

C, = : (2.15)
1 .
1+ 'EE + 'lumv/k2

W=J W

n=-o n

Up to this point, nothing has been said about the boundary conditions

at the supports. In the following sections, two cases will be considered: .

A. The supports are assumed to be infinitely rigid in the transverse

direction.

B. The supports are assumed to have some elasticity in that direction.

K. Transversely Rigid Supports

If the supports of a periodic beam are rigid, the displacements at

these supports are zero. Hence, at the support x = 0,

W) = § An =0 (2.16)
n:-&
or
A0 = - nz_w An (2.17)
n#0
Thus, the displacement, W, and the pressure, P], can be expressed as
(the common factor emt will be dropped from now on for convenience)
W= T A (eTTHX/E L gmiugH/Ly (2.18)
n=-w
n#0
=) -'i]J X/l —i].l X/Z
P = § dwpay (2 — -2 T yp (2.19)
1 = o 171 T G n
n 0
n#0

18
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ol il

where

5
§, = Cyl(c, - V% - al} /(c, - W) (2.20)

The coefficients An,s may be obtained by using the virtual work
principle (i.e., when all the forces on and in the beam are in equilibrium,
they should do no virtual work-through any virtual displacement).

Specifically, we assume a virtual displacement

8, = 6A_ (e~ THpX/% | omingX/2y (2.21)

As usual in complex algebra, the conjugate of the virtual displacement,

namely

6 = 6A_ (e3Hn*/2 - oiugX/Ey (2.22)

is used in calculating the virtual work. Due to the spatial periodicity of
the forcing function, the structural response and the virtual displacement,
the result of an integration over an entire structure composed of B periodic
elements is equal to B times that of integrating over one element. Since
the total virtual work done is zero, the virtual work done within each
periodic element is also zero and it is sufficient to apply the virtual work
principle to just one periodic unit.

Now, the contribution of the 1st term in Eq. (2.14) to the virtual

work is
t e w4 _j uy 4 _5
GFQ]) = I Z A, D{(jgo e~ TunX/% (79) e'1u0x/%}.
0 =m=00
8A, {ei“mxlz - eiuoxlz} dx
= Lln/0* Ay (i) ] ATneoh (2.23)
n#0

19



Note that in obtaining Eq. (2.23), the following relationships have been

used:

1}
=]

2 . . . O;m#n
(1) I e X/ | gtugx/ g 0T
' 0. 2 .m

S T . C;m#0
() I e-1umx/2 e]uoxlz dx =
0 s

8
i
o

Similarly, for the other terms in Eq. (2.14)

g @ . s

(MY . eMHoX/y gy

=CG{A'“+,,Z_@A" -sAm-z
n#0
A . . i .
6Wﬁ - f o~ THgX/2 (e1umx/2 _ e1“0x/2)_dx
0
{0 sm=0
L . GAm sm#FO
2 « -y X/ -iunx/2
W =—Jiwp]a]z ple - e 0
P 2 G 8
0 n 0

GAm (eiumxlz - eiuox/z) dx

iwp,a jwpqa ©
-{_HA,“__LL Foa Vo s

G G n=-w
m 0 n#0

20
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(2.25)

(2.26)

(2.27)

(2.28)



The virtual work done by the rotational spring, kr’ at the support x = 0
is

aﬁ}-= krer(O)(GAm)'(O) = krW'(O)(GAm)'(O)

where the prime, ', denotes differentiation w.r.t.x.

©o

. Yo\ .
SWr = kl‘ nz-w 1 An -(]Jn/l) + o ) (SAm
n#0
u
: 0
(w/2) - +
- . 2nm | 2mm |
= k. 1 AL 7 " A, (2.29)

= =00

n#0

The total virtual work, W, is

1

Using Eq. (2.23) and Eqs. (2.26)-(2.30), we obtain a set of simultaneous

Tinear equations for the coefficients An's as follows:

4 diwp.a, ,4 oo 4  iwp,a, ,4
4 3 121 2 4 P 191 2
Aplim * Ce T - T T+n§_mAn Mo * Ce - T 0D
m n#0 0
© 3 4
2~ 2w 2mm - _ %
LS i ahle nU AR (2.31)
n#0

The structural damping of the beam and the supports can be accounted for

by use of complex D and K

o
it

D'(1 + diny) .

ky.(1 + in,)

x
]

21



where ny and_nr are the loss factors for the beam and'thefsupport materials

i P

respecti#e]y. A]so; fntroducing the nondimensional quantities

4 3
2 _ 24
!
= - L
Py = PyuWay po
Y=k
6 =k, £4/D" > (2.32)
_ 4,
7 = an, £4/0"
Y = “’"v/kz
J

Eq. (2.31) can be simplified as

A, o(m) +0(0) T A +:1 Ag(n,m=5 (2.33)
N=«co n=-o
n#0 an
where
k ok
-92(1+—]+1‘w)’+a+1‘ﬁ—] -
4 Ky 2 Py
¢(m) =y + K - = - (2.34)
- 1+ he )1+ in)  Gul1* inp)
2
1+ inr o
gE(n,m) =y - T_I—Tﬁ; - (2nm) - (2mmw) ° (2.35)
4
- _ &7/D!
S=- 1 +'inb : (2.36)

In practical applications the number of terms in each infinite sum in (2.33)
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must be truncated. The truncated version of (2.33) way he written in a

matrix form as

GAY = (S} -t o (2.37)
where _ _ _
9y = ¢(2)8;5 + E(2,3) + ¢(0) - (2.38)
8,5 = Kronecher delta = {; :;g
2.5 = N, =(N-1), = =y =2,-1,1,2, = =, N-1, N

The choice of the number of simultaneous equations (=2N) depends on the
desired accuracy in computing the values of An'év”

In the remainder of this section, two special cases will be discussed.
in the first case, the supports will be assumed to offer no rotational
restraint to the beam, and in the second case the foundation will be
assumed purely elastic.

(1) Ho rotational restraint at the supports (i.e., kp = 0):

in this case Eq. (2.33) becomes :

Ay ¢(m) + ¢(0) E A, =S (2.39)

n=..oo

n£0

The solution of this equation is 'much simpler than that of Eq. (2.33)
as to be explained below. '

From Eq. (2.39), one observes that

A, ¢(m) = constant

o Ay 6(1) = Ay 9(2) = - - - - = o) (2.40)

Hence, combining Eqs. (2.39) and (2.40)
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Ay $(m) = S - S (2.41)
1+6(0) = 1/¢(n) ¢(0) = {1/¢(n)}

n=-« n=-wo

n#0

which readily gives

A, = > (2.42)

¢(me(0) T 1/6(n)

n:-oo

The number of terms required in Eq. (2.42) to obtain an accurate total
deflection can be simply determined. First, we establish the dominant term
in the series. Referring to this term as Ad’ compute the ratio

¢(ny)
rn = A/Al = |5y (2.43)

Defining the truncation as -N < n < N, a reasonable criterion for choosing
N is

ry << 1 for |n| > N .

(2) Elastic foundation:

As can be seen from Fig. 2, the foundation can be made elastic by choosing

(a) k2=ao
or (b) n, = 0
or both.
Case (a)
If k, > =, then Eq. (2.15) becomes
_ 2
Ce = -wmy + k.I (2.44)

and Eq. (2.34) reduces to
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R e e, ST

ST s g

%+ iB}

¢(m) = u:, + — - = - (2.45)
1 +n’ Gm(l + 1nb)
while £(n,m) and S remain unchanged.
Case (b)
When_nv = 0,
k,k -
_ 2 172
Ce = -0 mb ﬁ—k— (2.45)
: 1 2 )
and
2 -
Q a8 o1 p 1
o(m) = b - ———+ it —— (2.7)
1+ ing (o + B) ‘1 + iny G, 1+ ing

Again g£(n,m) and S are unchanged.

Combination of cases (1) and (2) (i.e., no rational restraint at the
supports and with an elastic foundation) will, of course, lead to further |
simplifications. The coefficients An‘s are obtained most simply from
Eq. (5.42) with ¢(m) given by either (2.45) or (2.47).

Once the coefficients A 's are determined, the displacement W and
other related quantities can be readily computed. For instance, the first

derivative (w.r.t. x), W', is given by

W) = 1 A {-(1‘ Bzﬂ) e X/ 4 “To e'i“oxl"} (2.48)
and
W) = § A (-iznm/2) (2.49)

Similarly, the second derivative is given by
T M2 Hp.2 4§ | |
w(x) = 3 A {(-j e A e“‘o"/"} (2.50)
n=-o
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oo + I
o) = § A (- 2mdetn (2.51)

n:-oo

Since we have substituted a unit plane wave for the excitation
oressure P, the computed response as given in Eq. (2.18) (with the time
variation factor eimt omitted) is actually the frequency response function
H(x,k). Therefore, we can write

H(x,k) = § A {e'i“nx”’ - e"'”ox/”“} (2.52)

n=«~c n

where the An's are obtained by solving the matrix equation (2.37) or

directly from Eq. (2.42).

B. Transversely Elastic Supports

Eventually if a periodic structure is used as a compliant surface,
the supports are most likely ribs or stringers which have inertia and
stiffness. In this section, we will assume that these supports can be
fep]aced by springs characterized by a spring constant kt in the transverse
direction as shown in Fig. T1-b. ~The inertia of the supports will be
neglected. An analysis similar to that of the previous section will apply
here. Avoiding repetition of the previous section, the differences may be
pointed out:

(1) The displacement at the jnternal supports are no longer equal

to zero and the displacement is given by

W(x,t) = § A, e'iunxll eiwt (2.53)

n=_co

(2) There will be an additional contribution to the virtual work.

This comes from the elasticity of the supports. Following the
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same procedure as in the previous section, the virtual work done

by kt at x=0 is

GNt = kt w(0) GAm = GAm . kt Y A (2.54)
Then the relationship governing the coefficients An's becuumes

s . S S;m=20
A ¢(m) +T §J A +vyu ] Aup = {_ ; (2.55)
m n=-co M A0 O:;m#0

where T = kt 3/D'. vy and S are the same as before, and the expression for
¢(m) is given by Eq. (2.34).

The first and second derivatives of the displacement are given by

<

W (x,t) = nZ-m A (-in, 72) e THpX/E glut (2.56)
W'(0,t) = E_m A(=iu 72) et (2.57)
W (x,t) = nz_m A (-in /2)% & THRX/R giut (2.58)
(.0 = T - Gyn? A et (2.59)
and the frequency response function H(x,k) is given by
H(x,k) = E A e X/t (2.60)

n=-e

Equations (2.48)-(2.52) and (2.56)-(2.60) will be used in the following

sections.
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It is worth noting that analyses of-certain special cases dis;ussed
in the previous section, including the case of zero rotational constraints
at the supports and the case of the elastic foundation, are also app]icable
here with the obvious modifications which correspond to the change in the

B.C.'s at the supports.



ITI. FINITE PERIODIC BEAM.QN A VISCOELASTIC FOUNDATION

"“The configuration of such a beam is shown in Fig. 3. Fig. 3-a shows
a beam with transversely rigid supports, while Fig. 3-b shows the same beam
with ‘transversely elastic supports. ' ' .

The response of a finite periodic beam to a unit excitation, ei(wt'kx),
can- be vieWed as consisting of two parts:

(1) The response of an infinitely long periodic beam with the same
periodic element. Such a response has already been discussed in the
preceding sections.

(2) The response corresponding to the reflections from the end
supports of the finife beam.

The waves reflected from the left-hand end support are positive-going waves,
while the ones reflected from the right-hand end support are, naturally,
negative-going waves. The reflected waves are free waves and can be viewed
as the solution of the equation of motion without the excitation wave (i.e.,
by putting P = 0 in Eq. (2.14)). In other words, the motion is a free
vibration of a semi-infinite periodic beam. It is important to note that
the total response, which consists of parts (1) and (2) explained above,
should satisfy the boundary conditions at the extreme ends of the finite
beam.

The equation of motion for free vibration of the beam is given by

4
D a—zi+ CH - Py =0 (3.1)
X 2=0

The reactive pressure P] depends on the displacement W. For a semi-

infinite periodic beam, there is no known closed-form solution for P].
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Fig. 3-b  Finite Periodic Beam (Transversely
Elastic Interior Supports)
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Therefore, an iterative procedure will be used. Since the effect of P] is
expected to be small, we will initially neglect such an effect (i.e., put

Py =0 in Eq. (3.1) ). Next, determine P, based on that solution of W,
z=0 o
and a new displacement will be computed by solving Eq. (3.1) with previously

determined'P] treated as an external force. This will become clearer as
we proceed.

Rewrite Eq. (3.1) (after putting Py = 0) as

4

~-RW=020 (3.2)
"t |
where R = - D - The solution of Eq. (3.2) can be written as
4 ApX '
W(x) = ] A e i 0<x<2 (3.3)
' n=1
in which the A 's are the four complex roots of R and they are
id A
A o= lﬁ]* e ?
o ig- P
Ay = IRI% e
40, T
_ ilg +3)
A= RI% e 702 (3.4)
.10
g izt
g = IRIk e ¥
o = tan™) __(JImR}

Re(R)

where Re, Im denote the real and imaginary parts of a complex quantity, resp.
Now, consider a positive-going wave which has a propagation constant p.
The response produced by such a wave in a periodic structure has the

essential- property of which:
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vector at station (r+1) = e x vector at station (r) (3.5)

where r and (r+1) are two stations on the periodic beam separated by a
distance equal to the length of the periodic e]emgnt, %, as shown in
Fig. 4. The components of such a vector can be taken as any four
independent linear combinations of the displacement and its first three
derivatives w.r.t.x.

The coefficients An's of Eq. (3.3) will be determined by using the
wave property explained above, and the boundary conditions at the extreme
ends of the beam. In what follows, two cases will be examined: transversely

rigid supports, and transversely elastic Supports.

A. Transversely Rigid Supports

For transversely rigid supports, the displacements at both ends of

each periodic element (x = 0, &) are zero. Therefore, Eq. (3.3) gives

4
I A;=0 (3.6)
J=1
4 AR
and Y A,ed =0 (3.7)
=1 J
Using the wave property expressed in Eq. (3.5) to relate the slopes at
x=0and x = &,
W'(2) = " W (o) (3.8)
Substituting Eq. (3.3) into Eq. (3.8), we obtain
4 AL u 4
A;r, e =e ) A2 (3.9)
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Furthermore, one can observe (from Fig. 4) that

Myq - k. W'(2) = D W'(2) (3.10)

r+l

Since M(x) = D W"(x), Eq. (3.10) becomes

1
(4]
=
=
—
(=)
~—

k
W'(2) + 7§-w'(z) =

k AL

2 r J
. (AS =,
AJ (AJ ) AJ) e

]
(o]

4
Y WY (3.11)
3=1 = J

or )
Equations (3.6), (3.7), (3.9) and (3.11) form a set of simultaneous equations
for the coefficients An's. However, these equations are not sufficient to
determine the coefficients An's because the propagation constant u is still
unknown and the problem will reduce to an eigenvalue problem as to be
demonstrated below.

Combining Eqs. (3.6) and (3.7), one obtains

b
)

5 = eE] {-Ajes - Ase,} (3.12)

AL 112

where e.=eJd -e s J=2,3,4 (3.13)

J

Substituting Eqs. (3.12), (3.13) dinto Egs. (3.9) and (3.11) and simplifying,

G {A} = " q {A} (3.14)
where
A3
{A} = {A4 (3.15)
f-f.6) e £.-f o) e
3772%2 &3 477282 &
G = (3.16)

P
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-1 -1
£3-528; €3 £4-6285 €4
Q = : : (3.17)
93-0p8p € 947925 &
As2 A]Z
fi = Ai e - A] e
R A
k A2
= (12 4 _T i
di = (Ai-+ D Ai) e (3.18)
S, =d, + (d, - dy) &le
1 1 2 1 2 "3
- =1 .
Rewriting Eq. (3.14) in a more suitable form as
c {A} = &{A} (3.19)
where c =qQ g (3.20)

Equation (3.19) is a standard eigenvalue problem in which e" is equal to the
eigenvalues of the matrix C. These eigenvalues, denoted by A] and Az, are

pairwise reciprocal [15] and they are

=1 2

where cij is the (i,j)th element of the matrix C. The propagation constant

u is given by

=
[

=+ log, Ay = ¥ log_ A,

up + iuI (3.22)
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The real part of'thé probagétion constant, BRs represen;s.the deéay of

the amplitude of the propagating wave while g represents'fté phase shift.
We can see from Eq. (3.22) that two'waveé propagating in opposite directions
will be generated in the structure. Also, the eigenvectors corresponding
to u# and -u can be determined. Of course, only the ratio between the two
components A, and A4 of each eigenvector is unique. This ratio can be used
in conjunction with Eqs. (3.6) and (3.12) to determine the coefficients An's

in terms of one of them (say 1, A2/A1, A3/A.I and A4/A]). 1f we denote

+

a. 3 for tve going wave
As/Ay = (Y (3.23)
J aj ; for -ve going wave ,
j=1+4
then Eq.- (3.3) becomes-
T
w, ) a; e J° ; +ve going wave
J=1
W(x) = ¢ (3.24)
4 _ Ax
w ) azed ; -ve going wave
- j=] J
"

where w_and w_ are the amplitudes of the positive and negative going waves,
respectively, and will be determined by using the B+C's at the extreme ends
of the beam.

Now, to determine the induced pressure P], we have to solve Eq. (2.11)
subjected to the B+C given by Eq. (2.12) and to the radiation condition
that it propagates in the negative-z domain. For a positive going wave
with u as a propagation constant, let us assume that P] can be computed

sufficiently accurately by the use of the following separable form:

o -i{u; + 2nw) x/%
Pp= 1 f(2) e I elwt (3.25)
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Substituting Eq. (3.30) into Eq. (2.11) and simplifying, we obtain .

falz) + k of (2) = q (3.26)
where. SRR '
K2 = [(a? - V)i /)% + o + 2w /0)]/a] . (3.27)
and W = u; +2nm. The solution to Eq. (3.25) can be written as
- - iknz_ L ‘-.-iknz _ . - o
f.(z) = By(n) e + B,(n) e (3.28)

However, imposition of the radiation condition (i.e., P1 can propagate in

the domain z < 0 only) results in

Bz(n) 0 -
ik z

*n
and fn(z) B](n) e (3.29)

it

In order to determine B](n), we use the B-C given by Eq. (2.12); namely
"
09z

z=0

which gives

q Asx
2 . 2.2 + J
-0y [jZ] (- + 21kaj +V Aj} ajw, e ]
= nZ_m ik B1(n) exp {~in, x/2}

in x/ :
Multiplying both sides of this equation by e n and integrating w.r.t.x

from 0 to £, one obtains

By(n) = w, By(n) -

where
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~ ' p]. 4 +
B](n) = ?E_E .Z a. — 1-~e
n” j=1 (/2 +44)

I (3.30)

2 R 2y 2 .=
(" o+ 21mVAj +V Aj) "'““‘n}
Comhining Eqs. (3.30) and (3.35), the expression for the induced pressure
P, becomes
ik z -iunx/z

15 Y ) ﬁl(n) e " e

N=-co

P olut (3.31)

and

RSN ~iuX/%
P]l;o W, nZ-w By(n) e nt dut (3.32)

 Treating P-l as an external force to Eq. (3.2), the particular

solution of Eq. (3.2) (call it wp+) is

Nos (x) =w,_ Q.(x) (3.33)
where
- o -iunxlz
Q(x) = 1 [1/q,(n)] e (3.34)
and
0 (n) = [1/B; (M1 (F/* - ¢, o) (3.35)
Combining Egs. (3.3) and (3.33), we obtain
( + AsX
W, _21 3y e I Q,(x) p 5 +ve going wave
J:
W(x) = ¢ (3.36)
4 AsX
w {( Y ajed +0Q.(x)); -ve going wave
\ = I
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| where Q_(x) has a similar form as that of Q+(x) with the obvious changes

which correspond to a negative going wave (i.e., replace u, a} and w+ by
J .
Keeping in mind that the total solution should satisfy the boundary

-p, a; and w_, respectively).

conditions at the extreme ends, the unknowns w, and w_ are then determined .
from such conditions. Assuming that both ends are identical to the internal
supports (i.e., transversely rigid, and have the same rotational stiffness

kr), the total bending moment at both ends should be equal to zero; i.e.,

M.(0) = M. (2B) = 0 (3.37)

where B is the number of the bays of the finite beam. The total moment at

either end consists of the contributions of the forced response of the

infinitely long beam and that of both the positive and negative going waves

of the semi-infinite beams. In other words,

Mt(O) =0 = M+(0) + M_(0) + Minf(o)- kr w%(O) - (3.38)
where Minf(x) = contribution of the forced response to the bending
moment at x.
N%(x) = total slope at x.

Note that the rotational spring kr at x = 0 is not a part of the periodic
element between x = 0 and x = 2 which explains the presence of the last

term of Eq. (3.38). Similarly,

M (2B) = 0 = M, (2B) + M_(2B) + M, .(2B) (3.39)

Substituting for the values of M_, M_ and wi in Eqs. (3.38) and (3.39), we
obtain two simultaneous equations for w_and w_ as to be explained below.

Note that
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4
wt';(o) - w,{} aJ A+ Q+(0) T+ w_{ 2 a A, + Q (0) b+ W'nf(O) (3.40)

J=1 J=1 J

and M(LB) = euB M(0). Thus, Eq. (3.38) becomes

k 4 _ :
2 " r * 1

k k..
u_ {z] aj A% + Q*(0) -T"(z aj Ay + QL0))} =g Wy £(0) - W3 L(0) (3.41)
J-

and Eq. (3.39) reduces to

u B -iy.B
Wy {e¥B Z a 24 Q(0) e "} +w_ {e™® z a, 12 +Q"(0) e Iy
3=1 g1 3
= Wy . (28) - (3.42)
Hence, from Eqs. (3.41) and 3.42), we find
o 15 kr (0) - (0)} (28) '
W' 0 W (0)} + a, W'(2B ' '
w+ = nf 1nf 2 (3.43)
B2y - By
1 {5 " Wi c(0) - WY c(0)} + oy W"(2B)
W= nf Minf L (3.44)
Brag - B
where
a, = Z at 22 A Q;(0) - l—<r-{ % ar A, + Q'(0)} )
1 j=1 J D j=1 J 3 +
- 2 n kr 4 - |
a, = 2 ay Ay + Q2(0) - —D—{jZ] aj A5+ QL(0)}
> (3.45)
6 = euB g + >\2 + ! IB Q"(O)
1 HANTE N
4 -iu.B
Bp=¢™ Y ajai+e 1 Qu(0) )
J=1



| Once W, and w_ are determined, the total disp]acement (which is the
sum of the displacements given in Eqs. (3.36) and (2.18) with the term
eiwt Omitted)'and other related quantities are readily determined. Since
we.have substituted a unit plane wave for the excitation pressure P, the
computed response is actually the frequency response function H. Therefore,
we can write |

4 ij .
J ajed +0 (x)

4 AX
Hxi2) =w, { ) afed +Q(x)+w {
Ue + jzl J + T =

© ~i(unt2nm)x/2 -funx/2
+# ] A fe 0 e 977} s 0<x<t  (3.46)

n=-o
Again, Mg is the forcing wave propagation constant and the coefficients
An's are obtained from Eq. (2.33).

It is to be noted that the frequency response function or any related
quantities outside (0 < x < %) can be obtained most simply from Eq. (3.46)
by using the wave property given in Eq. (3.5) (note that for a negative-

u

going wave the term e ™ replaces e in Eq. (3.5).

B. Transversely Elastic Supports

The analysis in this section is basically the same as that of the
previous one (i.e., finite beam on rigid supports). However, there are
some differences in the B.C.'s at the internal supports and in the number
of free waves which may propagate in the structure. This will become clear
as we proceed to calculate the coefficients A 's of Eq. (3.3).

Using the wave property as expressed in Eq. (3.3), we obtain for

(i) the displacement

W(2) = e"w(0)
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or

(ii) the slope

The same relationship as in Eq. (3.
(iii) the moment
The same relationship as in Eq. (3.

(iv) the shearing force (referring

sr+] - kt W(e)

Kt
or We(e) + R W(L)

Substituting Eq. (3.48) into Eq. (3.3),

k T

4
3t AJ
jz](kj + D) Aje

11).
to Fig. 5)

D W™ (2)

el-lw m (0)

u g
=e A
=1

3

A%

J

Combining Egs. (3.9), (3.11), (3.47) and (3.49), we obtain a set of

(3.47)

(3.48)

(3.49)

simultaneous equations relating the coefficients Aj‘s and the propagation

constant u.

matrix form as

G {A} = ¥ § {A}
T _
where {A} = [A", Az: A3= A4]
i W) At A%
e e e
A4 2 AL AL
1 2 3
G =
kA2 K. AL k
2 ry 1 2 ry "2 2 r
(A1 + TTJe (Az + TTJe (13 + Ty)e
k., A8 kK, A R k
3, “t.M 3, "ty 2 3, "t
Py *rple . (prple” O3+ pile

42
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This set of simultaneous equations can be written in a

(3.52)



=

w

=

(v 3

7 I

-— Y
T
g
TF
T,
Il

— T J
?tm

station r station r+l
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(Transversely Elastic Supports)

43



1 1 R 1
A] A2 13 A4
Q= |2 2 2 2 (3.53)
A] AZ 13 A4
3 43 3 3
A.l AZ A-3 A 4
L. -
kt = the spring constant of the elastic support,

and T denotes the transpose of a2 matrix. A matrix of the form given in
Eq. (3.53) is called a vandermonde matrix. Since the roots Aj's can be
assumed distinct, it can be shown that this matrix is nonsingular and
therefore Q 1 exists {23].

The remainder of the analysis can be carried out parallel to that of

the previous section. Rewrite Eq. (3.50) in the form of

T{A} = e¥{A} (3.54)

where

T = 6'] [ (3.55)

The matrix C is cross symmetric and possesses two pairs of reciprocal
eigenvalues [16]. If these eigenvalues are denoted by Aj(j =1->4),
and let

1 1
M=+ , A, = (3.56)
1 Ay 2 Ay

then the corresponding two pairs of propagation constants are
up = T0gg Ay = -ug
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=

2.2¥re

In other words, there will be two free waves propagating in the positive

direction with the propagation constants W and o s and two free waves -
propagating in the opposite direction with - and ~Uy. Also, the
eigenvectors corresponding to the different propagation constants Ean be
determined. Of course, only the normalized eigenvectors (the components
of an eigenvector divided by one of them) are unique. If we denote Aj/A]
(corresponding to uk) as gj,k » then the displacement wk due to the free
wave with propagation constant u can be written as

4 ij
Nk(x) = W Z] a5 i ©

(3.58)
where Wy is the amplitude of the wave and will be determined from the
B.C.'s at the extreme ends of the finite beam.
The effect of the induced pressure P] can be accounted for in a
manner similar to that explained in the previous section. To do that,
let P],k be the pressure induced by the wave with propagation constant Wy s

and let it be expressed as follows:

= W, )) g],k(n) exp{-(ul’k-+2nn) x/2} elwt (3.59)

n=-w0

Py K]
z=0

where ﬁl k(n) is given by Eq. (3.30) and I is the imaginary part of uk.: '

Similarly, let the particular solution of Eq. (3.1), with P]L-O replaced

by P.I k| , be wi. It is simple to show that
>"z2=0

wi = Wy W, (3.60)
- —1'(uI et 2nm) x/%
where We=1 By, (n)—= (3.61)
n=-co 4 ]JI k + 2n'ﬂ' 4 2
D(_—g’———) - Ce w
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We shall now proceed to determine the unknowns wk's; using the B.C.'s
at the.two extreme ends of the entire beam. Let the supports at the
extreme ends be infinitely rigid in the transverse direction, and let their

rotational stiffness be k.. Expressed mathematically, these conditions are

g
p o

W.(0) = -kZ#“k“” + W (0)} + W, (0) = 0 (3.62)
4

W, (4B) = kz_i {uP (2B) + W, (2B)} + W, (28) = 0 (3.63)
4 3

M.(0) = kz] W (0) + M, £(0) - k. W:(0) = 0 (3.64)
4 —

M. (28) = k£1 M, (2B) + M. -(2B) =0 (3.65)

where Mk(x) is the moment corresponding to {wi(x) + Nk(x)}, and the
subscript t denotes the total value (i.e., total displacement, moment, etc.).
Application of Eqs. (3.62)-(3.65) results in a set of simultaneous equations
for the unknowns wk's. These equations are combined into a matrix equation

as follows:

Hw ) = {R} (3.66)
where

k
T - __r - wn W
and the elements of the matrix V are given by
4 .
Vi < jzl a5yt W, (0)

wB 4 . iy B
ek Joa,  +e UK H(0)

v
2,k §=1 i,k
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8 . . k4 BN
Y3,k = 521 kAt "k(o) -5 L 3542 * (0}

iup B

ekt L gy +W(0) e

k=14
Once the unknowns wk's are determined, the total displacement is
readily determined by summing up the displacements corresponding to the
free waves wk's and that of the infinite beam. Since we have substituted

a unit plane wave for the excitation pressure P, the total displacement is

actually the frequency response function H. Therefore,
H(x, 7= = % {w (x, 7 + WP(x )} o+ H (x, o) | (3.68)
Uc k=1 k Ue k Uc inf Uc

where H. c(x, ﬁ%? is given by Eq. (2.60).

Again, the frequency response function or other related quantities
outside (0 < x < &) can be easily obtained from Eq. (3.68) by using the
wave property given in Eq. (3.5) (note that for a negative-going wave,

e replaces e! in Eq. (3.5)).
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IV. TWO-DIMENSIONAL CASE: AN INFINITELY
LONG PANEL BACKED BY AN AIR CAVITY

In the preceding sections, some possible designs of passive compliant
surfaces have been analyzed using simplified one-dimensional models of
periodic beams. Such simplified analyses reveal basic characteristics of
real structures, but more accurate representation requires the use of two-
dimensional models.

In this section, an infinitely long panel backed by an air cavity of
depth.d is considered. The side walls of the cavity are assumed fo be
either acoustically hard or acoustically soft and both cases will be dealt
with in this investigation. The panel is supported by pre-tensioned
circular solid wires at distant £ apart. The tension in each wire is T.
The configuration of such a panel is shown in Fig. 6.

The equation of motion of such a panel, not directly over a wire,

is given by

4 "o
DV'W + mpN =P + (P.l - PZ)L:-d (4.1)
where
R PR M
= 2. 278
oX 3X 3y ay
P = the turbulence pressure field (if the panel were motionless)

-
-
\

= induced additional pressure generated above the panel
P2 = pressure variation transmitted into the cavity

mass per unit area of the panel

=
n

(e
n

flexural rigidity of the panel.

Again, we shall determine first the frequency response function. For this

purpose, P is replaced by the sth plane wave oilwt - kx)  ismy/b
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Fig. 6 An Infinite Panel Backed by an Air Cavity



The panel is assumed to be simply supported at both .sides y = 0,b.

i Accordingly, the boundary conditions for W are

W(x,0,t) = W(x,b,t) =0 - (4.2)

The pressure P] which is induced by the panel motion is governed by

the convective wave motion

2 8y2 5 .
(5 + V3 Pp=a; vo P, . (4.3)

This induced pressure, P], is subjected to the B.C.

BP-l

] 9+v2 - _ 1
p](§E-+ v 5§) W=- 57 (4.4)
z=-~d

and the radiation condition that it propagates in the domain z < 0.
The pressure wave P2 which is also generated by the panel motion and

transmitted into the cavity is governed by the equation
a2p
(4.5)

where 3, is the speed of sound in the cavity. If the side walls of the

cavity are acoustically hard, then the boundary conditions for P2 are

2 _ =
3z - 0 at z=0 (4.6)
3P2
5 " 0 along y = 0,b (4.7)
oP
2 _ Iy
55 --pzw (4.8)
z=-d

where Po is the air density inside the cavity.
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Since the displacement must be spatially periodic (in the x-direction)
and must satisfy the B.C. (4.2), it is convenient to write the displacement

j{wt - kx) eisny/b

W due to the excitation e as follows:

W (x,y,t) = X] I AL e XL gip (m—gy) elut (4.9)
m=1 n=-c

where ¥, = Mg + 2n7 and ¥ is the forcing wave propagation constant (= k).

Again, our immediate objective is to determine the coefficients Amn's.

In view of the B.C. given in Eq. (4.4), the induced pressure P] may

be expressed in a form similar to that of the displacement; namely

Ploy,zity = § Y e M sin (I y) £ (2) 't (4.10)

Substituting Eq. (4.10) into Eq. (4.3) and simplifying, one obtains

n 2 =
fmn (z) + kon Tin (z) =0 (4.11)
2 2 2 2 2
2 u H H
where koo = 92._ Z%!._D.+ !E.(_D) - (jf) - (T (4.12)

a] a] L a]

The solution to Eq. (4.11) can be written as

z

_ ] 2z -ik
fmn(z) = By{(m,n) e KnnZ + Bz(m,n) e "“mn (4.13)

Since P] can propagate in the negative z-domain only, Bz(m,n) must be equal

to zero and Eq. (4.13) reduces to

f.,(2) = By(m,n) e kmn? (4.18)

Using the B.C. given by Eq. (4.4),
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B,(m,n) = AL (4.15)
2 2,5
c.{(c )* - a -(——-——])}
where Cn = %& . If we substitute Eqs. (4.14) and (4.15) into Eq. (4.10),
n

we obtain

P1(x,y,z,t) =3 3 B](m n) e1k (Z+d) 111nx/g' sin(Eb"-y) é‘“’t (4.16)

m=1 n=-o .

and

P](x,_y z,t) | =3y ] El(m,n) e WX/ % i (%y) elwt (4.17)

z=-d m=1 n=-«

where.B](m,n) = Bl(m,n) e'ikmnd. It is to be noted that the comments which

have been made concerning the effect of P] on the response are the same for
both the one-dimensional and two-dimensional cases (see page 16).

Similarly, because of the B.C. (4.8), a convenient form for P2 is

8

©

Py(x,y,2,t) = 20 I A Foo(2) e STUpX/e o (Egly) glwt (4.18)

The B.C.'s given by Eq. (4.7) are automatically satisfied. Substituting
Eq. (4.18) into Eq. (4.5) and simplifying, one obtains

Fu (Z) + K F(Z) (4.19)
2

where Kén = fi-- (%?)2 - (%?)2 . (4.20)
2

The solution to Eq. (4.19) may be written as

an(z) = D](m,n) e Kmn? + Dz(m,n) e~ Kpn? (4.21)

52



Imposition of Eq. (4.6) results in

D](m,n) = DZ(m,n) = D(m,n)
and | an(z) = Zng,n) cos (Kmnz) (4.22)
The B.C. given by Eq. (4.9) leads to
'mzo n‘g—m Amn e THX/% (os (%"—y) D(m,n) K sin (K d)
= p, m; ,:g.m A e WX/ gy (IT y) (4.23)

Multiplying both sides of Eq. (4.23) by e Mt X/ o (L"—b—'"- y) and integrating

over (0 < x<2; 0<y<b),

A,

a'n’ z%?(m') D(m',n') Km‘n' sin (Km'n' d)

@ b
_ 2 . mw . m'w
= p, u° 2 mzl Aon I sin (- y) cos (5 y) dy
0

which becomes, after simplification,

(m'»n") oy I — (4.2
A, Dm',n') =% A, - 4.24
e F(m') Kpupe 510 (Kpope ) mel ™ a(n - w?)
. 1T 3 m#0
where f(m') = . (4.25)
2 3 m'=0.

Substituting Eq. (4.24) 1into Eq.l(4.18) gives

® 4 cos (K__ z) .
2 mn e‘“‘n.x”'

Pz(xa}'szat) = p2 w ~
m=0 n=-» f(m) « Kan sin (Kmn d)
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mmw b Jwt
cos (5—y) )) A=~ e (4.26)
b r=1 rn n(r2 - m2)
mtr=odd

Exchanging the symbols r and m, and reversihg the summation order in
Eq. (4.26) to make it compatible with the form of the displacement W,

the expression for P2 becomes

Pz(x,y,z,t)l = pz 0)2 X X Amn e_h?nx/g‘ 7——4—“‘—-2——2
z=-d m=1 n=-o . . r=0 f(r)m(m -r")
r+m=odd
rm ; - iwt
eot (Krnd) cos (7;-y)/grn e | (4.27)

- cot (K.d)
It is to pe noted that when Kpn is imaginary, the quantity —x

. , rn
Coth (|Km|d) : *
becomes - . This means that the nth component of P2 would

L

act as an added mass.

Determination of the coefficients Ap,'s:

The virtual work principle will be used to determine Amn's. The
total virtual work done by all the forces on and in the panel (including
those due to the wires) should be equal to zero. To calculate the virtual
work, we will consider one periodic-e]ement only for the same reasoning

given for the one-dimensional case. Let the virtual displacement be

o = SA . . e T X/ o ('“—t')“- y) etiut (4.28)

As usual in complex algebra, the complex conjugate of &W will be used in

calculating the virtual work.
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~ Let the virtual work done by {D Y s mpﬁ - P }be W, .
: : g . - . z=_d

it

o - b o o
0. = =T (u,~n . )x/%
. 6"1 j; mZ1 nsz GAmfn'.e .n n Amn

;in (%?-y) sin (E%E.y) ¢(m,n) dx dy | (4.29)

where

otmnd = { ot o287 207 4 (mmy#} o2

. i P ma](cn - V)Z

: : > (4.30)
2 2 mr L

e % - o B D)

Carrying out the integration in Eq. (4.29) and simplifying, we obtain

_ b - |
GWi = zi'Am'n' GAm'n' ¢(m',n') (4.31)

Similarly, the virtual work done by P2 is

b2 . '
SW. = f I P2| e M /% i (msz-y) dx dy
P2 b -
z=-
o 2 4 d)
- e ¥ oA Py W™ m . cot (Krn
m'n m=] ™0 ﬂ(m2 - rz) f(r) Krn

Sy
© o

' _
sin (msz-y) cos (%g-y) d%l

(-3

=2 % 21 AL plmm',n') 6A L (4.32)

where
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o 2
4 Pp min' - 4 cot (Krnd)

¥(m,m',n) = 1 ~ . (4.33)
r=0 (mz-rz)f(r)'n2 {Krn
mtr=o0dd .
m'+r=o0dd
The virtual work done by the excitation eismy/b ilut - kx) ;o
W_ = - bt e'iuoxll eiu 1X/% g sin (!EIL )
p o n m'n' B Y
D 4y - T (s m ) (430
where
( : oy stm’
-% 6Amlnl (m ﬂ/b){; - ('])2 } 6n'0 1S # m'
—_ M) - (_5._"1)
as,m',n’') = < b b
-1 % S g-an.o . s s=m (4.35)

The wire, because of its elastic and inertial properties, will produce
shearing forces and moments in the panel along the line of attachment. The

virtual work done by the shearing forces is (say at x = 0)

2
o= 3 W
Gw-S B 0 (Ew Iw 3_y4 * Pw Aw 7" T 2) 6W(0,y) dy

fb % _r
at .oy

b o co 4 2
mm ) 2 mm
JO mZ] nZ-°° Ew Tw TJ—) - Oy Ay wt ¥ TH) }

. mMm . m'm
Amn aAm'n' sin (1;-y) sin (—E—-y)dy

i
N}
~1
by
3
=

GAm'n' g(m',n) .. (4.36)
where
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m
I

w _ Young's modulus of the wire materials

Iw = moment of inertia of the wire about the x-axis
Py = density of the wire material
Aw = cross sectional area of the wire
T = tension app]ied'to the wire
and
' m' ﬂ4 2 m'wz |
gm'sn) = E 1, (557) - o, A, w + T(5) : (4.37)

Also, the virtual work done by the torsional moments in the wire is

W L{ Gc ¥ ” * o, Jw%ﬁ} sW'(0,y) dy (4.38)
axay

where G is the shear modulus, C is the Saint-Venant constant of uniform
torsion, and Jw is the polar moment of inertia of the wire. Carrying out

the integration in Eq. (4.38) and simplifying:

I _.b ] 1
W, =5 Z_m Ay 8A i T(m'an,n') (4.39)
where
12 HoH
voLnt) = mmw 24 ‘n'n’
r(m',n,n") -{-GC( b)+pwaw} -22 | (4.40)

Since the total virtual work must be zero,

Wy + awpz + oW, + W + awp =0 (4.47)

Substituting into this equation the values of &Wj, swp R SWb, GW; and sﬁh
2
from Equations (4.29), (4.32), (4.34), (4.36) and (4.39), respectively, we

obtain a set of simultaneous equations for the coefficients Amn's.
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and _
2

T ¢ Pv —iu_x/2
P (X .Y’Z,t)l = z 2 COt( d) e un
2 =-d m=1 n=-= Kmn Kmn
A, sin (%g-y) eiot (4-54)

Now, the virtual work done by the pressure P, is

b © * p, w2 .
= cot (K_d) e"“nxll
Lnglan %n mn

[}
Amn sin (%g-y) SA ! e1un'x/2 sin (EB!-y) dx dy

Do W2

cot (Kypid) AL, (4.55)

lnl

Therefore, using Eq. (4.55) instead of Eq. (4.32), we obtain a new set of

simultaneous linear equations for the coefficients Amn s

A 3mtn) +1 T Amtnan) AL = B(santnt) (4.56)

= =00

t [ |d
where ¢(m',n') = ¢(m'.n') + p, w w? cot (yip:d) , (4.57)
lnl

and Bls,m[,n') is given by Eq. (4.43). Moreover, we can write a truncated

Eq. (4.56) in a matrix form

[Kﬁnas] {AGB} = {B(s,m,n)} (4.58)
where R;nnaB - o{(m,n) § 6nB %-A(m B,n) 6 (4.59)
m=1,2 . N3

=12, ...5,N;



ns= -N4, e o o 9 "]’0’]’ « s 3 N4
B=-N4’o o = "],Oglgn . ,N4’

and (ZN3 + 1) and (2N4 + 1) are the number of significant modes in the y
and x directions, respectively.

Once the coefficients Amn's are determined from Eq. (4.42) or Eq. (4.57),
the frequency response function of ihe structure due to the sth componeht

o1smy/b ei(mt - kx)

of the pressure wave, » 15 readily determined; namely

~ ©® o -fux/%
HS(X..Y.k).— mZ] nz-co Amn e n sin (% y) (4.60)

61



. sﬂiu_c]"l_JRAL RESPONSE -

In the preceding sections, we.wéfe'méfnly cohcgrned with the frequency
response function, H. The next qgestiop'is'whgther or not desired structural

motion can be Qenerated by boundary Iayer.turbuiehte excitations. Under

such excitations, the structural reSponée is a random prdcéSs-and should be
characterized in terms of statistical quahtities ;uch as spectral density,
- mean square value, ..., etc. | o |

-If we accept the frozen pattern hypothesis fbr thé furbulence field,
then after reaching stochastic stationarity the displacement W may be
expressed as

W(x,y,t) = fw 1 Ho(xayok) Fg e aF(k) (5.1)

-0 s=-m

where E{dF(k]) dF*(kz)} 6(k1 - kZ) Sp(k]) dk.l dk2

n
2
LA

fs s

and f is given by Eq. (1.4). The frequency response function Hs is
given in Eq. (4.60). The autocorrelation function of the displacement W
is

T, (%:¥,t5t5) = E(H(x,y,t;) Wr(x,y,t,)} (5.2)

' _ _ N
Combining Eqs. (5.1), (5.2) and noting that the Fourier components fs are

uncorrelated, we get

2

§=-c

-Rw(xs.yst) =-rw(x:.V9t'|"t2) =.r

(k) eTkUCT g | . (5.3)
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The spectral density of the displacement, ¢ , is the Fourier transform

of the autocorre]ation function; i.e.,

o lxy0) =g | & Rw()i,y,-T) dt

-co-co

- znrrs-_w‘" (y:H) 1 g Spik)

et (KUg - “)Tdk dr

S Y W
= | sz_m IHS.(x,y,U 112 f Sp(uc) 8(2 -w) du

3 ' Q42
1 H %y ]

or

o (xyw) = S)(0) 1 Ihloya 1P £, (5.4)
Cc

For the one-dimensional case, ¢w,becomes

o, 00) = S0 [HOuIZ (5.5)

If the drag reduction mechanism hypothesized in Reference [37 is
true, then a good design is one that can respond to the boundary layer
excitations in a désirab]e manné? within a particular frequency range.
The root mean square value of the structural response attributed to a

frequency range (mz,wu) is g

“u ks .
W ms (X2¥) = Dw 2,,(X,y,0) dm] (5.6)
.



where wy and w, are the lower and upper limits of the frequency range,
respectively.

To carry out the integration in Eq. (5.6), we need an expression for
the turbulence spectrum. Considerable amount of information is available
on experimentally determined boundary-layer turbulence spectra at various
free stream velocities. See, for example, [21,24]. In particular, Bull
[24] has done extensive spectral density measurements for subsonic boundary
layer pressure fluctuations. Therefore, numerical calculations in this
thesis are based on Bull's spectrum but with the decay factor in the

convection direction omitted, and the results will be presented in the

section dealing with the numerical results.



VI. SPECTRAL DENSITIES OF P AND (P.l + P)

A. Spectral Density of Pj

Let the frequency response function of P] due to the excitation
eismy/b gilwt - kx) be H, ((x,y,k). After reaching stochastic stationarity,

the pressure Py can be expressed“as

Pi(x,y,t) = | E _?;.H],s(x,y,k) eimt dF (k) | (6.1)

00 §=aco

Carrying out an analysis similar to that of the displacement, the spectral

density of P, (for the two-dimensional case) can be expressed as

oo

¢p]pl(x,y,w) =1 £l H]’S(x,y,ﬁiolz Sp (@) (6.2)

s=_oo

where H.l S(x, ﬁi) is obtained from Eq. (4.17), namely
> c

Hy (ys ) = Z] I Bj(mn) e X% gip (5 ¥) (6.3)
3 c m=1 n=-o

For the one-dimensional case,

- Wy2
0 p, (0] = [Hy (s g1 5 (w) (6.4)

In this case H] depends on the configuration of the beam. For example,
in the case of an infinitely long beam on rigid supports, Hl is given by

Eq. (2.19).

B. Spectral Density of (P + Py)

Let
P=P+P (6.5)
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The autocorrelation function, rsa(x,y,t],tz), of P is given by

Tap(X¥stpty) = ELP(xyt;) Plxayty) ) (6.6)
= E(P(x.¥,t;) P(X.y.ty)} +E(P; (x,y,t) Py(x,y,t))]

+ E(P(x,y,t) Py(x,y,t,)} + E{P(x,y,t,) Pi(x,y,t4)} ' (6.7)

When thé stochastic stationarity of P and P] is reached, Eq. (6.7) becomes
Rgp(x:¥57) = Ryp(x.y,7) + Rp]p](x,y,r) + Rpp](x,y,r)

+ Rplp(x,y?r) (6.8)

The spectral density of B is merely the Fourier transform of

Rﬁa(x,y,T); i.e.,

Qﬁﬁ(x,y,m) = Qpp(x,y,w) + ¢pp](x,y,m) + 2Re{¢pp](x,y,w)} (6.9)

Expressing p and p; as in Egs. (1.5) and (6.1), respectively,

- T

= I VY ikox -irmy/b
Rp1p(x,y,1)- E I fsz_w fe H]’S(x,y,k]) rZ-m f.e 2% e
i(kyty = kot,)U
e |1 2 dF(kq) dF*(kz) diy dk, (6.10)
- f” Dy (k) el Tsmb THUGT ¢ () o

-00 S==x»

(6.11)
Taking the Fourier transform of Eq. (6.11) and simplifying,

©o

« ) .
_ 5 x w, _~ismy/b .
Spp, (Xovs0) = et U T b F Hy Slxysgn) e } Splw)  (6.12)

§=-o
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Pop(*sy.) = sg_m fs Sylw) (6.13)
Combining Egs. (6.2), (6.12) and (6.13), we fing that
v 2
Uoxeyiw) = g (w) f (T * [0 (%542
Pp P L g s ey
T ~ismy/b
T 2Re (e Y o-isny i s(xy,9) (6.14)
l,s Uc
For the one~dimens1’ona1 Case, One Obtaing
(x @) =g (w) 1+ [H, (x --)[2+ 2Pe{e]¢xH (x -‘”—)} (6 15)
pp 7 pt 1% ) 117 :
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VII. NUMERICAL RESULTS

In the preceding sections, we have derived expressions for the frequency

response functions and the root mean square values of the displacements for

a number of structural configurations. 1In this section, a parametric study
will be presented on the effect of the changes in span length, plate thick-
ness,..., -etc., on the structural response as represented by the change in
frequency response function and the root mean square value. In order to
carry out the computations, the pressure spectrum Sp(w) has to be specified
for which we chose Bull's spectrum as shown in Fig. 7. The coordinates of

the figure are Sp(w) V/qg_G* and wd*/V where

V = free stream velocity
qg = dynamic pressure = ] pV2
6* = displacement thickness of the boundary layer

The displacement thickness is related to the boundary layer thickness & by
&* ~ §/8 (7.1)

and according to Schlichting [25]

§(x) = 0.37 x R°V/° (7.2)
where x = distance from the leading edge to the location
where § is to be evaluated
R= Vx/va = Reynold's number
v, = kinematic viscosity of the fluid medium (air).

Traditionally the boundary-layer thickness is measured to where the velocity

is equal to 0.99 V.
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Fig. 7 Bull's Experimental Spectrum
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Bull has fitted his experimental data by the expression

q o T e : i
Sp(w) =, Ov {3.7 e 2w 0.8 e 47w -34e 8w }x 10 5 (7.3)
where w = ws*/V (7.4)

Thus, for a certain flow velocity V, &* can be determined and in_turn_Sp(m)
can be computed.

Since the vibration is random, a measure of its magnitude is the root
mean square value which takes the place of the amplitude of a deterministic
vibration. Also, there is lack of a universa]]y agreed upon notion
replacing the usual concept of wave Tength. However, we shall propose
the term dominant wave length as a_measuyé of the spatial variation of
the total vibration which is computed from the dominant peak frequency
of the response spectrum.

The numerical results presented heréafter have been obtained by using
a double-precision procedure on thé IBM.3$0/75 digita] compdter. Some
brief comments about the computer programs involved are diScussed in
Appendix I. These numerical results cover: (i) the one-dimensional and

(ii) the two-dimensional cases.

(i) The One-Dimensional Case

The structure which is idealized as a periodic beam is assumed to be
made of mylar with the following properties:

p (density) = 1.3915 x 103 kg/m3

D = End/12(1 %)

v = .3 (Poisson's ratio)

h = beam thickness (to be determined).
£ = 2.757 x 10° N/m?

mb = ph (mass per unit area)
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The physical constants of the air above the beam are

Py = 0.1227 k /n®
Ay = 340.036 m/sec

v, = 2.88-x"10-5 mzlsec

A parametric.study using the above values has been carried out to

obtaifi.an. optimal design, in tefms of the fol]dwfng'phy51cal quantities,

which meets the reﬁuirements'set forth in reference [5]:

(a)
(b)
(c)
(d)
(e)

the periodic length &

the beam thickness h

the rotational stiffness kp -

the foumiatioh material properties (k], ks nv)

the elasticity of the supports kt (in the case of elastic support).

As explained in the text, the one-dimensional case includes both

infinite and f4afte beams having supports which can be assumed transversely

rigid or elastic. In all of these cases, the computations are made for the

mid-span point (x = £2/2). Also, the convection velocity Uc is taken as .8

of the flow velocity V which is chosen as 30.48 m/sec. The different

numerical results, corresponding to different cases, are presented in the

following subsections.

A. An Infinite Beam on Rigid Supports

Our parametric study has been réstricted within the following ranges

of values:

L= (2.54% 6.35) x 10> m

(5.08 ~ 25.4) x 10 °%m

2
[ ]

(2.714 ~ 13.57) x 10° N/m°

> 2,710)x 10! N/m®

Fall
—
"

ky = (2714 x 10

4



n, = 0% 2.714 x 10* N-sec/m?

3

k, = 4.448 x 107~ 4,448 x 10" N-m/m/rad.

The results of our study are described below:

(1) A typical response of the beam, represented by the square of the
absolute value of the frequency response function, is shown in Fig. 8. It
can be seen from this figure that there is a dominant peak occurring at a

certain frequency, say f

max” The peak region is the dominant part of the

structural response and, therefore, our attention will be focused on 1f.

For the relatively low flow velocity (V = 30.48 m/scc) considered
herein, the peak response frequency appears to be near the fundamental
natural frequency of the system. An estimate of this natural frequency
can be obtained by considering a simply supported beam of length & resting
on an elastic foundation of stiffness k] (i.e., k2=<n). The natural

frequency of the nth mode is given by

7
. 1 /D(nw/e) + Ky
f = e (7.5)

If we use the values:

g = 3.8 x 10 m
h = 5.08 x 10°%m

ky = 2.714 x 10° N/m°

then the fundamental natural frequency f] is approximately equal to 990 Hz.
The peak frequency fmax computed by using the above £, h and k] values as
seen in Figs. 8 and 10 is 900 Hz. The slight discrepancy between 990 and
900 is due to the fact that other factors which affect fmax have not been

included in Eq. (7.5). Such factors are the convection velocity, the

rotational stiffness, and the interaction between neighboring spans.
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£

% (2) Within the range of parameters investigated, the dominant wave
component is found to be associated with an n value between -2 and 2.
Some samples of the coefficients A 's indicative of relative importance of
different wave.components are showﬁ in Tables 1-3. It is important fo
menfioﬁ that these An's were computed from”Eq. (2.33) or its simplified
verﬁions and by truncating the num?er of simultaneous equations to 16
(1.§ﬂ,.N =/§), ilt Qas found from ;he computations that a minimum of N = 8'
wasrnecessary to“obtain a reasonable accuracy especially at or near the
peak frequency. |

-(3) The change in the periodic length, %, greatly affects the
structural response including its amplitude, peak frequency, and the
dominant wave length. As expected, an increase in £ generally leads to
a reduction in the peak frequency and an increase in the amplitude. The
wave length.of the nth wave component is related to the periodic length 2
as follows:
A 1

n
- (7.6)
. max

where we assumed that this component contributed to the response at the
peak frequency fmax' Since the dominant terms are those corresponding to
n between -2 and 2, the design criterion concerning the wave length should
be checked against the wave length of each of these components. For
instance, when n - ¥2, the absolute value of the R.H.S. of Eq. (7.6) is
approximately equal to 1/2 (since the value of fmax l/Uc 1s small within
the range of values being considered). Therefore, the corresponding wave
Tengths A-z,z are approximately equal to 2/2. Consequently, these two

wave lengths can easily satisfy the wave length requirement (< 2.54 x 1073 m
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for values of £ ranging from (2.54 to 3.81) x 10 °m. The tcrm which poses a
great difficulty in meeting the wave length requirement is A_]. The wave
length associated with this term is obtained from Eq. (7.6) (by putting n

equal to -1):

= (7.7)

The absolute value of the R.H.S. of Eq. (7.7) is always greater than one.
Therefore, to obtain the desired wave length, £ has to be less than 2.54

x 107 %m. However, such a small £ would increase fmax beyond the desired
frequency range. As a compromise we have chosen £ as 3.81 x lo_sm for this
parametric study (which might not satisfy the wave length requirement but
it keeps fmax within the desired frequency range).

(4) The thickness h has a great effect on the amplitude and on the
peak frequency of the response. An increase in h shifts fmax to a higher
value and generally leads to a decrease in the amplitude.

(5) The increase in the stiffness k] reduces the amplitude and

increases the peak frequency fm (See Fig. 9)

ax’

(6) The change in the stiffness k, does not affect the peak frequency
appreciably. However, an increase in k2 increases the amplitude. The
limiting case of an infinite k2 is simply that of an elastic foundation of
stiffness k]. The effect of the change of k2 on the response is shown in
Fig. 10.

(7) The increase in the damping coefficient nys for the range of
values used, leads to an increase in the amplitude without any significant

change in the peak frequency. (See Fig. 11) The structural response

corresponding to the special case of n, = 0 is shown in Fig. 12.
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(8) An increase in the rotational stiffness kr increases the peak

frequency and slightly increases the amplitude. (See Fig. 13)

Some representative root mean square values of the response, and the
wave Tengths of the doﬁinant-components are shown in Table 4. Asican be

seen from this table, the root mean square value, W s is sma?ler than

r.m.s.
the desired values for most of the cases shown. Also, the wave Iéngth A1
is always higher than the desired value for the reasons we exp]aiﬁed before.

It should be noted that, unless stated otherwise on the figure itself,
the following values have been used in computing the response shown in

Figures 8 through 13:

2= 3.81 x10°m I.
h= 508x10°%m /
ky = 2.714 X 10°  N/m> '
ky = 2714 x 10° N/m3

kr = 4.448 x 10_3 N-m/m/rad.

n, = 2.714 x 103 N—sec/m3

Ne = .01

n, =0

B. An Infinite Beam on Transversely Elastic Supports

The only difference between the structural configuration of the beam
considered here and that of an infinite beam on transversely rigid supports
is in the introduction of transversely elastic springs, each characterized
by a spring constant kt’ at the supports. Therefore, in this section, we
are mainly concerned with the effect of these transversely elastic supports
on the structural response. Such effect is shown in Figs. 14-17. Figure 14
shows a typical response of the beam over a wide range of frequencies,

while Figs. 15-17 focus on the peak region only. Based on these figures,
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we conclude that:
(1) The elastic spring constant, kt’ has a considerable effect on the

location of the peak frequency. As kt increases, the peak frequency is

- shifted to a higher value until it approaches that of the transversely rigid-

support case (i.e., ky = ©). Thus, by choosing a small kt’ it is possible
to reduce the periodic length to as small as 2.54 x 10"%n so that the require-
ment for wave length can be satisfied without raising fmax to outside the
desired frequency range.

(2) The amplitude of the response increases as the value of K
decreases. Therefore, a suitable choice of kt can help in bringing the
amplitude to the desired value.

Typical values of the root mean square displacements and the wave
length of the dominant terms are shown in Table 5. It can be clearly seen
that, except for the first one, the amplitude and the frequency of all cases
presented fit the desired ranges. Moreover, the wave length A_] of the
component n = -1 is very close to the desired value of 2.5 x 107%n (the
difference is approximately 1%).

It is to be noted that the following values have been used in computing

the response shown in Figs. 14-17:

L= 2.54 x 107°n

h=5.08 x 10 °n

kr = 4.448 x 107> N-m/m/rad.
“v = 2.714 x J,O3 N—sec/ms
n. = .01

= 0.0
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Table 1. Sample of the Coefficients An is (in meters)

X N . ! ! 1 e _
| ! | | : ! ! ! !

n | -8 -7 -6 5 -4 -3 o2 0%
RefA } 4:26 x 107°6.35 x 107 1,03 x 107*1.85 x 107" 3.8 x 107*1.19 x 107 -1.06 x 10%-1.75 x 107 1.29 x 107
| 1 - - - ' - | -7 - - X - : - :
InfA} |-2.26x10 3 3.43x1070 -5.58x107° 1.03x1077 -2.26x1070 -7.5x107%  s.sxa0”l p.sxio”l-s.ooxioTl
om0 ‘ 2 : 3 : 4 - 6 7 b 8 -

! H H ; H . ' ! ’
RefA } |6.6x107°  -7.44x107% Lo.65x10™ | -3.63x107% -1.78x107* -1.01x10™* -6.09x107 | -4.19x107° | - ;

; ; . : i I o : ]

m{A } {-1.75x10"" 3.10x2070 4.04x107% C1.5ax107F | 7.77x107% 4.47x10° © 2.84x107% | 1.9 x 107° - E

2 = 3.81 x 10°° m; h = 5.08 x 1070 m; n, = 2.714 x 10° N sec/m:IJ

k. = 2.714 x 10° N/m°; k

1 2

.

f = 898 HZ (peak frequency) ; * dominant term

= 2.714 x 10° N/m°; k= 4.448 x 10°% N-m/m/rad; n_ = .
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Table 2. Sample of the Coefficients An's (in meters)

I . ) - e
*

n -8 ¢+ -7 | -6 -5 -4 -3 -2 -1 0
Re{A_} |-2.08x107%1-3,04x107% (-5.18x107° | -9.14x107 |-1.93x10™ | -5.25x107% [-2. 79x10‘§ 8.63x10™> |-8.05x1074
R O, _| R i_ e A - | . [P PO ! e e e S : .-.:
| In{A_} 15.334x10"%18.128x107% '1.33x1077 | 2.33x1077 4.57x1077 | 1.24x107® :6 09x10°% 11.3 x 1075 -2.6 x 107 -8 i
A T T S T " © s 6 L7 S
L 4 o N S R
'Re{A } |5.5x107° ;8 89x1o'4 3.81x107% |1.18x107%  6.20x107° 3.73x107° 32.4x10's 1.e2x1075 | -
| In{A )} i3.68x107 5 % 3.73x10°% -9.6x1077 |-4.01x1077 -2.05x107 '-1.19x1077 L7.5x10° |-5.08x107% | - :

? : A : - ; S

% =2.5 x10° m; h =508 x 10° my n, = 2.714 x 10% N. sec/m

k, = 2.714 x 10° N/m°; K, = 2714 x 10° N/m°; k_ = 4.448 x 107°N-m/m/rad; n, = .01

f = 898 HZ (not near a peak) ; * dominant term
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Table 3.

e e ; ‘,
n -8 -7 -6 -5
! |
ey e L
Re{A } -2.49x107 -3.81x107° !-6.09x10'3?-1.1x10'2
-Im{An} 6.85x10™% 1.067x107> ?1.72x10'3 '3.04x10"3
ot b .

n : 1% E 2 é 3 ? 4
- S S j
? : -1 -2 -2
 RefA } | -1.27 1.09x107"  '3.23x10°° 1.42x10
 InfA } [ 3550107 -3.06x107% [-9.04x107% .3.96x10"3

% =2.54x10°n

k, = 2.714 x 10° N/m° k,

Sample of the

h=25.08x10 m

Coefficients An's (in meters)

6

f = 1585 HZ(peak frequency); * dominant term

n, = 0.0 N s.-ec/m3

o N K_ = 4.448 x 10"% N-m/m/rad; n, = .01

! }

-4 b3 L -2 P 0
{ -2 -2 -1 ‘ -1
-2.36x107° |-6.59x107° -4.26x107" '6.19x10 1.0287
i .. .I ‘. o e e ; . e . - . -
! -3 -2 -1 -1 -
| 6.6x107°  '1.82x107° 11,193x107 -1.73x10 3.20x10
. . oL _____,uT:_ I e e e e e

5 6 L7 8 -
7.54x107% (4.47x107% © 2,87x107° [1.952107° ]
' | ‘ P N
! _3] B4 3
r2.108x10 !-1.24x1077 i-8.05x107" [-5.46x107" -
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Fig. 8 Response of an Infinite Beam (Transversely Rigid Supports)
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Fig. 9 Effect of k] on the Response
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Fig. 10 Effect of k2 on the Response
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Fig. 11 Effect of n, on the Response
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Table 4.
- -

ST B T Nr
| :
i N/m3 : N/m3 N—sec/m3
i | S
5.42x10°  {2.74x10° 1.35x10"
'4.071x10° " "
e sk =
.2.714x10° ;" | "
SR o ' 2.714x10°
— ! !
Com l271ax10® 1w
— ; é
i " 5 i -
| 2.714x10° 0
g "o i 2.714x10
j |
T 5
A | 2.714x10°
R ]

2 = 3.81

-K
r

N-m/m/rad '

" 4.448x107°

‘ "
"
i "
i 17"
!
, 1"
E 4.448x10
;4.448x10
x 103 m

h

Peak
max

range

HZ HZ
1223 1200-1252
1073 1050-1102
898 850-950
898 ' 875-927
897 | 875-927
679 | 650-702
20 924 850-950
"l g7 900-952

= 5.08 x 10'6 m

Sample of Displacements and Wave Length of an Infinite Beam on Transversely Rigid Supports

L Yeoms. ’ |A I % |A'2I !
m ! m & m !
5.53x10°  4.7x107% 2.1x107%
6.73x10°%  4.57x107% [ 2.07x107%
P : e .<.....-_£v____......_._._._.. ..;I.. |
9.78x10°% 4.42x107% [ 2.03x107°
2.08x107° ¢ m T
. ! l
4.11x1008 0 0w ;
; ‘ : ]
ﬁ : : |
3.56x107>  .4.24x107°  2.0x107° |
: L
5.76x10°® . 2.45x1073 [ 2.052x10"%
o -
5.58x10™% 1 4.45x107% 1 2.052x10 -3
X H i
/ ; -
= .01
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Fig. 16 Response of an Infinite Beam on an Elastic Foundation (n, = 0)
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Table 5.

Sample of Displacements

and Wave Lengths

of an Infinite Beam on Transversely

Elastic Supports

k2 Ny kr kt max Peak Tr.m.s. 'A-ll lx—Zl
range
N/m3 N—sec/m3 N-m/m/rad N/m3 Hz Hz m m m

2.714x10° 3 -3 5 -5 -3 -3

.714x10° | 2.714x10 { 4.448x10 2.714x10 1513 1475-1539 2.52x10 12.997x107 7} 1.38x10

; A i N S del ‘
@ 1 4 i -5 | 3 3

" " % " | 2.714x10 1189  ; 1160-1210 4.318x10°° 12,895x10" i1.35x10—
4 ; 3 ! -5 ! -3 -3

" " ] " 2.714x10 972 | 900-950 4.6 x 10 ° ; 2.82x10 ~i 1.34x10

— e T . . ; .

) ¢
" 714x10* | " 2.714x10° | 942 | 925-975 5.1 x 107> | 2.79x107% 1.33x107>
: : : : i

n i i " ! 3 i -4 -3 -3

0 ; 2.714x10 695 [ 675-725 1.676x10° " | 2.71x10 °}1.32x10

‘‘‘‘‘‘‘ . I U A T

e i 3 : ! -4 -3; -3

©° 0 " 2.714x10 975 950-1000  1.65x10 © 2.82x1077} 1. 34x10

-3 _ -6 5,3
£ =2.54 x10 "m; h=25,08 x 10 ~ m; k1 = 2,714 x 10° N/m", nv = .01




C. Finite Periodic Beam

In this section, numerical resb1ts of the structural respénse df a.
5-span periodic beam will be presen%ed. These results correspénd toitwo
cases: (a) the interior supports are transﬁersely rigid, (b) ihe interior
subports are transversely elastic. ;In both cases, each of theiend supports
is‘assumed to be rigid in the trans&erse direction, and to pos%ess a
rotational stiffness kr‘ The physfta] data used in the computadtions for
these cases are the same as those used previously for the corrésponding
infinitely-long beams. Also, the response referred to is for éhe midpoint
of the first span. | |

(a) Transversely Rigid Interior Supports

Comparisons between the structural response of a finite béam and that
of an infinitely long beam, other physi;a] data being identicat, are
presented in Figs. 18-20. Each of these figures shows the square of the
absolute value of the frequency response function vs. the frequéncy.

" Figure 18 shows the comparison when a viscoelastic foundatjpp i% used for
both finite and infinite beams, while in the case of Figs. 18h3;d'20 the
foundation is purely elastic. i

As expected, the response curve for each finite beam contains multiple
peaks clustered in frequency zones. Within the frequency rangeéshown.in
the figures, the response peaks are clustered roughly in the fi%st free-
wave propagation zone [15]. The number of peaks in each zone i§ expected
to be equal to the number of spans of the finite periodic beam.; However,
it is possible that some of those peaks might not appear because of the

amount of damping present in the system or because of the choice of a

coarse frequency interval in the computations.
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(b) Transversely Elastic Interior Supports

In this case, there are four free waves which might propagate in the
finite beam, compared to only two free waves in the case of transversely
rigid-support case. This increase in the number of waves, and the ill-
conditioned matrices involved make the computations more complicated. More
specifically, the vandermonde matrix given in Eq. (3.53) and the system of
simultaneous equations relating the unknowns wk's (i.e., Eq. (3.66)) are
very ill-conditioned (meaning a small error in the elements of these matrices
would magnify leading to much larger errors). Although there are special
techniques to deal with such matrices (see Appendix I), the computational
accuracy can suffer greatly from any numerical errors which might arise in
the course of computations.

A comparison between the structural résponse of a finite beam and that
of an infinite one, other ﬁhysica] data béing identical, is shown in Fig. 21.
Only the response near and within thé fir;t free-wave propagation zone is
shown in the figure. Again, the response contains multiple peaks clustered
roughly within this free-wav? propagation zone. However, the number of
peaks as shown in Fig. 21 exceeds the expected number, that is the number
of spans of the finite beam. It is believed that some of those peaks have
resulted from the numerical errors which might have occurred due to the

il11-conditioned matrices already mentioned.

(ii) The Two-Dimensional Case

In this case, the panel is assumed to be made of mylar of which the
physical properties have been previously mentioned in connection with the
one-dimensional case. The wires are assumed to be made of steel which has

the'following properties:
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- 6 = 7.92 x 10" n/m?

7.68 x 10° kg/m°

Py =
o, = 9.65 x 107 N/m?
Ew = 2.068 x 101! N/m2

Again, a parametric study using the above values has been carried out
to obtain an optimal design, in terms of the following physical quantities,
which meets the requirements set forth in reference [5]:

(1) the periodic length &

(2) the panel thickness h

(3) the panel width b

(4) the wire diameter D

(5) the cavity depth d

(6) the tension applied to each wire, T.

Before presenting the results of our parametric study, some introductory
remarks might be helpful:

(a) In light of the results of the parametric study carried out for
the one-dimensional case, we have chosen £ as 2.54 x 107%m. This value of £
is expected to be near the "best" choice for meeting the wave length
requirement and, at the same time, keeping the peak region within the
desired frequency range.

(b) The wire diameter has been chosen as proportional to the panel

thickness h, namely

D = vh (7.8)

The proportionality constant y can be chosen arbitrarily but one should keep
in mind that a large y would make the wires act as rigid supports (a reason-

able choice might be 2-6).
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ﬁ (c) To make sure that the allowable stress of the wire material, Oy

would not be exceeded, the tension T has been chosen as

T<o, A . (7.9)

(d) It is to be noted that all computations for structural resbonse
have been carried out at the midpoint (x = 2/2, y = b/2) of the first panel.
Also, the number of modes has been chosen as 5 in the x-direction and 14 in
the y-direction.

(e) For simpler representation of the numerical results, let us

rewrite Eq. (5.4) as

~ 2 .
o6 5w = [0 v 2 sp0) (7.10)

where H is the "total" frequency response function of the panel and is
given by

o« 2
I |mte v @] 1 (7.11)

"~ 2
|H(x, Y, w)l = S
§=- c

The results of our parametric study are summarized as follows:

(1) A typical relationship between lﬁ[2 and the frequency f is shown
in Fig. 22 (peaks are not drawn to scale). As can.be seen, there are two
peak regions: the first one occurs at a very low frequency range while the
second one occurs at a much higher range. When the values (in meters),
h = 8,98x107%, 2 = 2.54x107>, b = 1.778x107} and d = 2.54x107% were used in the

compufations, the first peak region was found around 10 Hz and the second one

near 990 Hz.
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To explain the occurrence of these two peak regions, consider a simpler
case of a panel of length % and width b which is simply supported along all
sides and vibrating in vacuum. Assuming a sine series solutfdn in both
directions, the natural frequency for the nth mode in the x-direction and

the mth mode in the y-direction for such a panel is given by

2 2
B/ @ o

Y

where Pp is the panel mass per unit area (= mp/h). Using the values for

h, 2, b and d mentioned above in Eq. (7.12) gives

£ = 9.12 {100n% + (n?/49)}

The first few natural frequencies (1.e., n = 1) are all very close to 912 Hz.
Therefore, the second peak region in Fig. 22 is mainly due to the panel
resonance. The presence of the external flow and the cavity appears to
result in.only minor shift in resonance frequency.

Secondly, if we consider a simply supported wire of length b, area Aw
and subjected to a tensile force T, then the natural frequency of the mth

mode can be computed from

T E 1 7
f m +ww(m1r)

b

For a wire diameter of .001 inches, the second term under the square root

sign of Eq. (7.13) is much smaller than the first one. Therefore,

m T m [/ %3 _
T2V A < Y o 3.15m

W W W
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For 1 < m < 14, the natural frequencies héve a range 3-45 Hz. This means
that the first peak region in Fig. 22 is mainly due to the wire resonance.

The first and second peak regions of the panel response are plotted in
much larger scales in Figs. 23 and 24, respectively. '

Since drag reduction is expected to depend primarily on the second peak
region response, our attention will be focused henceforth on this region and
any reference to the response will have the restricted meahing of the second
peak region. '

(2) The panel thickness has a great effect on both the amplitude and
the location of the peak region. An increase in the thickness h shifts the
peak region to a higher frequency range and generally reduces the amplitude.

(3) The effect of the bending rigidity of the wire on the panel

4
response represented by the term EwIw g—%— in Eq. (4.36) is negligible.

(4) Neglecting the contribution g¥ the torsional moments acting on
the wire, represented by the term f(mh n, n')in Eq. (4.40), to the virtual
work slightly reduces the computed response amplitude.

(5) The change in the tension'T has very little effect on the
structural response of this region (an peak), as long as the tensile
stress in the wire reméins unchanged (Thus, the cross-sectional area of
the wire must be changed correspondingly).

(6) The change in the panel width (1.778'~ 3.048) x 10" n significantly
alters the locations and the amplitudes of the individual peaks of this
peak region (see Figs. 24 and 25).

(7) No significant change in the structural response was noticed when
the cavity depth was changed (2.54 ~ 1.27)x10"3m {see Figs. 24 and 26).

Again, it is to be noted that the following values have been used

in computing the response shown in Figs. 22-26:
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2,54 x 10 °n

8.98 x 10" % m

[

4.448 x 1072 N

2.54 x 107> m

o b | =2 o
[l

The root mean square value of the displacement, Nr m.s
4

from Eq. (5.6 ). A typical LI of 1.74 x 10" m has been obtained

» is computed

when using the above data and choosing a cavity depth d = 2.54 x 10"%n and a panel

width b = 1.778x10%n. This value of W, is based on the second peak

.m.s.
“requency range 970-1045 Hz, and it can be reduced by including structural
damping in the computations. Therefore, damping materials or devices can
perhaps be used to adjust the response level to within the desired range.
Finally, the spectral density °p1p] of the induced pressure P] is
plotted in Fig. 27 over a frquency range of 5-2000 Hz, and again in

Fig. 28 in a larger scale within the second peak region.
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VIII. CONCLUSIONS

Based on this investigation, we can conclude. that:

(1). It is possible to design a periodic structure which, when excited
by turbulent boundary layer preSSuré’?ﬂﬁéfﬁations, would have a narrow-band
response. Within this narrow-band'region (peak region), the responsé can
be adjusted to satisfy predetermined réquirements by changing some
structural or flow parameters. Such requirements can be the amplitude,
propagation speed, and wave length of the dominant component of a packet
of waves constituting the narrow-band response.

(2) It has been found from the parametric study that the membrane
thickness and the periodic length of the structural construction
significantly affect the location of the peak region, the ampliitude,
and the wave length of the dominant response. Accordingly, by suitable
choice of these two parameters, the periodic structure would have a
resonant mode vibrating at a frequency that falls within the energyn'
containing spectral range of the exciting turbulence pressure field,
leading to a favorable interaction.

(3) Structural damping of the membrane or other damping devices
such as viscoelastic foundations can be used to adjust the amplitude of
the vibration to within a desired range.

(4) As far as the structural response is concerned, the effect of
the additional pressure induced by the structural motion above the
structure is relatively small. However, this conclusion is based on an
analysis where viscosity in the fluid has been neglected. A more accurate

representation of the induced pressure can be obtained if the viscous

110



effects can be included in the égvérnfnéﬂwavé equation. ‘At present,
there are no analytical solutions which. take viscous effects into account.
(5) The wave propagation approach is most simple and convenient in
the analysis of infinitely long periodic structures. However, this
advantage diminishes greatly for;finite;periodic structures and the:

analysis is very much similar to that of the transfer matrix method.
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APPENDIX I

SOME BRIEF COMMENTS ON THE COMPUTER PROGRAMS USED

In this Appendix, no attempt will be made to reproduce the complete
computer programs used or to discusé'fhémlin defaf]. However, it is felt
useful to comment very briefly on some of the procedures and subroutines
which have been helpful in obtaining the numerical results.

(1) In solving the system of simultaneous equations, Eq. (2.33),

Eq. (4.45) or (4.58), we have used the I.M.S.L. subroutine LEQTIC.

(2) The eigensystem subroutine package EISPAC was used to obtain
the eigenvalues of the matrix T in Eq. (3.54).%

(3) The solution of the i1T-conditioned system of simultaneous
equations, Eq. (3.66), was made possible by use of the U.0.I. Tibrary
subroutine GAUSZ. This subroutine employes Gauss elimination technique
(with complete pivoting).

(4) The inverse of the Vandermonde matrix Q in Eq. (3.53) was obtained
using the eigensystem subroutine package MINFIT. This subroutine uses a
singular value decomposition method to solve a system of equations AX = B.
The inverse of matrix A is obtained as a special case in which B is replaced
by the identity matrix.

(5) Integration of Eq. (5.6) was carried out using Bode's 5-point

integration method [26], namely

JX4 f(x) dx =
*0

(7f, + 32f, + 12f, + 32f

B 1]
[Sa] =2

+ 71,)

0 1 2 3

* It is possible to solve the generalized eigenvalue problem of
Eq. (3.50) directly by the use of the LZ-algorithm [31] (i.e., without
inverting the matrix Q).
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